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L E V I N E ,  A. S. A N D  J. E. M O R L E Y .  Effect o f  intraventricular adenosine on food intake in rats. P H A R M A C O L  
B I O C H E M  B E H A V  19(1) 23-26, 1983. - -Previous  studies have  shown that  peripherally adminis tered pur ines  suppress  
food intake in rats. In this study we show that central administration of adenosine, adenine and AMP potently suppressed 
food intake in rats. Intraperitoneal adenosine suppressed feeding at the 100 and 50 mg/kg dose whereas 100, 50 and 10/~g of 
intraventricular adenosine suppressed feeding after intracerebroventricular injection at 30 minutes and up to 120 minutes at 
the high doses. Inosine, 2-deoxyinosine, 7-methyl-inosine and 2-deoxyguanosine all failed to suppress food intake when 
given intraventricularly at the same doses used for adenosine, adenine and AMP. Adenosine, 10/~g ICV, also decreases 
water uptake. The effect of adenosine was specific for ingestive behaviors as it did not significantly decrease spontaneous 
movement or grooming. These results suggest that adenosine suppresses feeding via a central mechanism and that this 
suppressive effect is not dependent on deamination of adenosine to inosine. The central adenosine effect appears to work 
by a different mechanism to the satiety effect of peripherally administered inosine. 

Adenosine Inosine Appetite Purines Food intake Diazepam 

CURRENTLY there is a great deal of interest in the role of arate lines of evidence have stimulated the investigation 
purines as modulators of neurotransmission. Evidence for of the role ofpurines in feeding behavior. In one case the role 
the release of ATP from sensory nerve endings was first of adenosine in feeding was examined since adipocytes re- 
reported by Holton and Holton in 1953 [ 18] and the release of lease adenosine [39], adenosine has antilipolytic action 
ATP from central nervous structures both in vivo [15, 19, 31, [14,42] and large fat cells contain greater amounts of ATP 
50] and in vitro [36, 37, 38, 46, 51] was later reported. The and cyclic AMP. In the other case, inosine and 
release of purines following nerve stimulation is a general 2-deoxyinosine were examined as possible regulators of food 
phenomenon as nerve stimulation releases purines in the rat intake since these compounds have been suggested to be 
stomach [34], kidney [12], blood vessels [44], vas deferens endogenous ligands of the benzodiazepine receptor [1,41], a 
[48] and the urinary bladder [4]. Burnstock [2, 3, 4] has pro- receptor reported to be involved in the initiation of feeding 
posed that ATP is a neurotransmitter which may have devel- [7,23]. In the present study, we report for the first time that 
oped early in the evolution of nervous communication sys- centrally administered adenine, adenosine and AMP mark- 
terns and that purinergic nerves exist in addition to choliner- edly suppress food intake in rats. 
gic and adrenergic nerves. Adenosine and adenine nucleo- 
tides inhibit release of transmitters such as norepinephrine METHOD 
[10, 45, 47], serotonin [17], dopamine [17,22] and acetyl- Forty-eight male Sprague-Dawley rats (125-250 g) given 
choline [17] probably by acting on the cell membrane [13]. free access to Purina lab chow and tap water and housed in 
Adenosine in general appears to have a depressant action on individual cages under conditions of controlled temperature 
the discharge of cortical neurons [30]. Such a depressant and illumination (0600 to 1800 hours) were used in all studies. 
action of adenosine on cortical neurons is shared by In the rats receiving intraventricular purines or vehicle, 
adenosine nucleotides but not by degradative products such stainless steel guide tubes were stereotactically implanted 
as inosine, hypoxanthine, xanthine or adenine [30]. Many of into the lateral ventricle under nembutal anesthesia at least 
the actions of the methylxanthines may be due to their inhibi- five days prior to the commencement of the experiments 
tory actions on adenosine and adenine nucleotides (and an- [24]. All agents were administered in a 10/zl volume of vehi- 
tagonism of adenosine receptors) [11, 32, 35). cle when given intraventricularly, or in a 0.2 cc volume of 

It is well known that both the central and peripheral nerv- vehicle subcutaneously. All testing was done in the home 
ous systems are involved in the regulation of food intake cage. 
with a balance between multiple neurotransmitters carefully All substances were purchased commercially: adenosine, 
regulating the ingestion of food [23]. Recent reports indicate adenine, AMP, inosine, 2-deoxyinosine, 7 methylinosine and 
that peripherally administered purines may be neu- 2-deoxyguanosine (Sigma Chemical Company, St. Louis, 
roregulators of consummatory behavior [6,21]. Two sep- MO). 
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30 60 t20 FIG. 2. Effect of intracerebroventricular administration of adeno- 
sine, adenine and AMP on food intake in rats. *p<0.01, tp<0.05, 

TIME (rain) F(30 min)=9.2, p<0.005, F(60 min)=5.38, p<0.005, F(120 

FIG. I. Effect of peripheral administration of adenosine, adenine min)=3.12, p<0.05. 
and AMP on food intake in rats. *p<0.01, tp <0.05, F(30 rain)=7.22, 
p<0.005, F(60 min)=5.05, p<0.005, F(120 rain)= 18.71, p<0.005. 

TABLE 1 

E F F E C T  O F  I N T R A V E N T R I C U L A R  A D M I N I S T R A T I O N  O F  I N O S I N E ,  
Feeding was induced by a 24 hour starvation period (all 2-DEOXYINOSINE, 7-METHYLINOSINE AND 2-DEOXYGUANOSINE 

rats received a training period prior to experimentation to ON FOOD INTAKE 
insure consistant food intake). Rats were injected with 
purines or vehicle (saline pH 5.5 or 9.0) intracerebroven- Food Intake (g) 
tricularly (ICV) or intraperitoneally following the starvation n 30 rain 60 min 120 min 
period. Rats were immediately placed back in their home 

cage and given 7-10 g of Purina lab chow and water ad lib. Vehicle (100/xg) 7 3.3 ± 0.7 4.4 +_ 0.8 5.9 ± 1.1 
Food was removed and weighed at 30, 60 and 120 minutes lnosine (100/xg) 6 3.5 ± 0.4 4.9 +_ 0.7 6.1 ± 0.6 
and replaced with pre-weighed lab chow. Animals were 2 Deoxyinosine 6 2.9 ± 0.4 4.4 ± 0.7 5.6 _+ 1.0 
utilized in a cross over manner with a control group included (100 ~g) 

in each experiment. Animals were given a 3-4 day rest 7 Methylinosine 6 3.1 ± 0.5 4.5 ± 0.8 5.7 ± 1.0 
period between experiments. ( 100 tzg) 

In a separate experiment, 16 animals were water but not 2Deoxyguanosine 6 3.8 ± 0.5 5.4 ± 0.6 6.3 ± 0.6 
food deprived, for 18 hours and water intake was then meas- (100/zg) 
ured for 30 minutes after ICV injection of 10/xg adenosine or 
vehicle. In this experiment we also noted the time the 
animals spent in spontaneous locomotion, resting, eating, 
drinking and grooming by observing the behavior of each 
animal once every minute for 30 minutes. (Table 2). At this dose the effect of adenosine appeared to be 

All results are expressed as the mean_SEM.  Results specific for ingestive behaviors as there was no significant 
were compared by a one-way analysis of variance at each decrease in spontaneous locomotion or grooming behavior 
time point followed by the two-tailed unpaired Student's (Table 1). 
t-test. 

D I S C U S S I O N  

In the present study we have demonstrated that 
RESULTS adenosine potently suppresses feeding when administered 

Peripheral administration of. adenosine resulted in a both centrally and peripherally. Intraventricular administra- 
marked decrease in food intake for up to 60 minutes at the tion of 10/xg of adenosine suppressed feeding during the first 
100 and 50 mg/kg doses, but not at the 10 mg/kg dose (Fig. 1). 30 minutes of the study whereas 10,000 p,g of adenosine 
Animals did not appear to be sedated and behavior patterns administered peripherally (to a 200 g rat) was necessary to 
appeared to be normal. Adenine and AMP also suppressed suppress feeding during this same time period. Adenine and 
feeding when administered intraperitoneally. ICV adenosine adenosine have previously been demonstrated to cross the 
suppressed food intake in a dose related manner. ICV admin- blood brain barrier [8]. However,  AMP can be converted to 
istration of adenosine, adenine and AMP all suppressed food adenosine and adenine and can therefore indirectly be trans- 
intake at doses about 200 times as small as those given pe- ported to the central nervous system [49]. These observa- 
ripherally (Fig. 2). Central administration of inosine, tions suggest that adenosine may act via a central mech- 
2-deoxyinosine, 7-methylinosine and 2-deoxyguanosine (100 anism. The purine base adenine and the nucleotide AMP also 
/zg) all failed to suppress food intake (Table 1). Central ad- suppressed feeding markedly when given in much smaller 
ministration of 10/xg adenosine also suppressed water intake quantities centrally compared with peripheral administra- 



ADENOSINE AND FEEDING 25 

TABLE 2 

"EFFECT OF CENTRAL ADMINISTRATION OF ADENOSINE (10 p.g) ON WATER 
INTAKE AND BEHAVIOR 

Adenosine 
(10/zg ICV) Saline p 

Drinking (ml) 3.0 _+ 1.4 11.2 ___ 1.6 <0.01 
Ingestive behaviors (% total) 8 - 3 25 _+ 1 <0.01 

Drinking (% total) 8 _+ 3 18 _+ 3 <0.05 
Eating (% total) 0 8 -+ 3 <0.05 

Grooming (% total) 15 _+ 6 15 -+ 3 NS 
Spontaneous movement (% total) 25 ___ 4 31 ___ 4 NS 
Resting (% total) 52 --- 8 28 - 7 <0.05 

tion. Centrally administered adenosine also suppresses by inhibiting norepinephrine, GABA and dopamine, all 
drinking. The effect of adenosine appears to be relatively known to be involved in the initiation of feeding [16, 20, 26, 
specific for ingestive behaviors as there was no significant 27, 28]. In addition, a role has been reported [29,43] for 
decrease in spontaneous locomotion or grooming behavior adenosine in certain central actions of opiates, phar- 
after central adenosine administration, macologic agents known to induce feeding in sated rats 

We and others [6,21] have shown that peripheral adminis- [25,33]. Thus, purines may be involved in short term regula- 
tration of inosine also suppresses food intake in rats. This tion of feeding by interacting with the intricate network of 
effect did not seem to be to an aversive phenomenon as both peptides and monoamines involved in the modulation of food 
peripherally administered inosine and adenosine did not intake [23]. 
suppress water intake and the animals did not show any Since adenosine has antilipolytic activity [14,42] and is 
unusual behaviors [6,21]. Also the doses of adenosine and also released by fat cells [39] it is tempting to postulate that 
inosine were well below the tranquilizing dose of these purines may also be involved in long term regulation of feed- 
purines [9]. Capogrossi et al. [6] found that adenosine more ing. Capogrossi et al. [6] suggested adenosine may act as a 
potently suppressed feeding during the first hour of their signal between the adipose tissue and the hypothalamus. The 
study (86% reduction) when compared to inosine (69%). In fact that the suppression of food intake is more marked when 
the present study, after ICV administration, inosine, adenosine is administered centrally than when given periph- 
2-deoxyinosine and 7-methylinosine all failed to suppress erally suggests that purines may indeed act as messengers 
feeding when given at the same dosage as adenosine. Thus, between the peripheral and the central nervous system. 
although adenosine deaminase activity is high in the brain However, the fact that centrally administered adenosine 
[40] it does not appear that conversion of adenosine to in- suppressed both water and food intake, in contrast to pe- 
osine is the mechanism by which purines suppress food in- ripherally administered purines which only decrease food 
take centrally. This is in contrast to the suggestion by Skol- intake, suggests that the peripheral satiety effects of inosine 
nick et al. [41] that the anticonvulsant activities of adenosine and adenosine may work through a different mechanism to 
may result from deamination of adenosine to inosine. In the the central effect of adenosine. 
case of food suppression it appears that adenosine is more 
potent than inosine both centrally and peripherally. Since 
inosine can be converted to adenosine by means of a salvage ACKNOWLEDGEMENTS 
pathway [49] it is possible that conversion to adenosine is We thank Martha Grace and Julie Kneip for their excellent tech- 
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